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1. The smallest of three consecutive positive integers is n. Find the difference between the
squares of the smallest and largest of these three integers, and hence prove that this
difference is four times the middle one of these three integers. [4] 

 

2. P and Q are consecutive odd positive integers such that P > Q.

Prove that P 2 ‒ Q 2 is a multiple of 8. [3]  

3. You are given that n, n + 1 and n + 2 are three consecutive integers.

i. Expand and simplify n2 + (n + 1)2 + (n + 2)2.

[2] 

ii. For what values of n will the sum of the squares of these three consecutive integers be
an even number?
Give a reason for your answer.

[2] 

4. i. Disprove the following statement:

[2] 

ii. Prove that no number of the form 3n (where n is a positive integer) has 5 as its final
digit.

[2] 

5. i. Factorise fully n3 − n.

[2] 

ii. Hence prove that, if n is an integer, n3 − n is divisible by 6.

[2] 
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6. You are given that n is a positive integer.

By expressing x2n − 1 as a product of two factors, prove that 22n − 1 is divisible by 3.
[4] 

7. By finding a counter example, disprove the following statement.

If p and q are non-zero real numbers with p < q , then . [2] 

8. The spreadsheet in Fig. 5 shows a multiplication table. The numbers 35, 36, 35 in the shaded
cells are of the form n2 – 1, n2, n2 – 1, where n = 6. This pattern can also be seen for the other
square numbers on the diagonal of the table in cells B2, C3, …, I9.

Fig. 5 

The spreadsheet can be extended to include larger numbers. Prove that the pattern holds 
for all integers 
n > 1. [3] 

 

9. Use a counter example to disprove the following statement.

2n − 1 is prime for all n > 1 
[2] 

10. You are given that the sum of the interior angles of a polygon with n sides is 180(n − 2)°.
Using this result, or otherwise, prove that the interior angle of a regular polygon cannot be
155°. [3] 

END OF QUESTION paper 
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Mark scheme 
Question Answer/Indicative content Marks Part marks and guidance 

1 

n      n + 1     n + 2 soi 

(n + 2)2 – n2 soi 

4n + 4 obtained with at least one interim step 

shown 

B1 

M1 

A1 

B1 

[4] 

may be 
earned later 

allow ft for 
next three 
marks for 
other general 
consecutive 
integers 
eg n –1      n     n 
+ 1

for other 
integers in 
terms of n (eg 
2n, 2n + 1, 
2n + 2 or 2n 
+ 1, 2n + 3,
2n + 5)
allow ft for
this M1 only

may be 
obtained 
independently 

allow 
n2  – (n 
+ 2)2 for
M1 then
A0 for
negative
answer;
may still
earn
last B1

B0 for n 
+ 1 × 4

Examiner’s Comments 

The majority of candidates that attempted 

this standard proof question gained full 

marks, showing the needed interim step(s) 

to obtain the corresponding accuracy 

marks. A minority chose wrong expressions 

for the three integers (e.g. n, 2n, 3n). 

Unfortunately candidates missing the 

middle term of 4n when squaring the 

(n + 2) term was seen quite often. Some 

candidates considered the first term 

squared minus the last term squared and 

then conveniently ignored the negative 

signs. A handful of candidates attempted an 

entirely numerical approach. 

PhysicsAndMathsTutor.com

Proof (Yr. 1) 



© OCR 2017. Page 4 of 9 

Total 4 

2 

(2n + 1)2 − (2n −1)2 oe 

4n2 + 4n + 1 − (4n2 −4n + 1) 

= 8n (so multiple of 8) 

B1(AO2.1) 

M1(AO1.1) 

A1(AO2.4) 

[3] 

Allow one 
slip eg 
sign error 

Note: 
Numerical 
verification 
0 

OR P = Q 
+ 2
P2 − Q2 =
(Q + 2)2 −
Q2 B1
= 4(Q + 1)
(actorized)
M1
(Q + 1)
divisible by
2 so
4(Q + 1) is
multiple of
8 A1
OR Q = P 
− 2

Examiner’s Comments 

There were quite a number of completely 

correct proofs, usually starting with P = 2n 

+ 1 or 2n + 3. A small number of

candidates put P = 2n + 1 and Q = 2n + 3;

these candidates could gain some credit for

subsequent work. A considerable number

of candidates did not use the fact that P 

and Q were odd at the start of the proof,

and worked with P and (P − 2) or Q and (Q 

+ 2), or with n and (n + 2) or (n − 1) and (n +

1). These candidates generally showed that

P2 − Q2 is a multiple of 4; full credit could

have been awarded by using the fact that P 

and Q are odd at this point to prove the

required result, but this was not seen.

Attempts to show this by giving numerical 

responses were also seen, but these 

scored 0. Occasionally a candidate gave 

several numerical responses, and claimed 

that this was ‘proof by exhaustion’. 

Total 3 

3 i 3n2 + 6n + 5 isw B2 
M1 for a correct expansion of at least one 

of (n + 1)2 and (n + 2)2 

ii odd numbers with valid explanation B2 
marks dep on 9(i) correct or starting again 

for B2 must see at least odd × odd = odd 

accept a full valid argument using 

odd and even from starting again 
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[for 3n2] (or when n is odd, [3]n2 is odd) and 

odd [+ even] + odd = even soi 

condone lack of odd × even = even for 6n; 

condone no consideration of n being even 

or B2 for deductive argument such as: 6n 

is always even [and 5 is odd] so 3n2 must 

be odd so n is odd 

B1 for odd numbers with a correct partial 

explanation or a partially correct 

explanation 

or B1 for an otherwise fully correct 

argument for odd numbers but with 

conclusion positive odd numbers or 

conclusion negative odd numbers 

B0 for just a few trials and conclusion 

Examiner's Comments 

The straightforward algebra in the first part 

was done correctly by most candidates. 

The most common errors were to write (n + 

1)2 as n2 + 1, or sometimes n2 + 2n + 2 and

(n + 2)2 as n2 + 4.

There was some encouraging work in the 

proof part with a number of slightly different 

methods being demonstrated. The majority 

considered the three terms that they had 

found in (i) but others went further and 

expressed the quadratic function as 3n(n + 

2) + 5 or 3(n + 1)2 + 2. As these were the

more capable candidates they were then

often argued the case elegantly. Some

candidates returned to the original function

successfully with a few replacing n by 2m +

1 and expanding to find a factor of 2. The

candidates who fared badly were those

who failed to draw any conclusion at all,

those who attempted to use an incorrect

expression from (i) or those who just tried

to show it with some numerical values.

ignore numerical trials or examples 

in this part – only a generalised 

argument can gain credit 

Total 4 

4 i 35 + 2 = 245 [which is not prime] M1 Attempt to find counter-example If A0, allow M1 for 3n + 2 correctly 

i A1 

correct counter-example identified 

Examiner's Comments 
evaluated for 3 values of n 
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This proved to be very straightforward, with 

nearly everyone quoting the first correct 

counter-example of 245 (though a few 

came up with some much larger numbers). 

ii (30 = 1), 31 = 3, 32 = 9, 33 = 27, 34 = 81, … M1 Evaluate 3n for n = 0 to 4 or 1 to 5 allow just final digit written 

ii so units digits cycle through 1, 3, 9, 7, 1, 3, 

ii … A1 

ii 
so cannot be a ‘5’. 
OR 

ii 3n is not divisible by 5 B1 

ii 
all numbers ending in ‘5’ are divisible by 5. 

so its last digit cannot be a ‘5’ 
B1 

must state conclusion for B2 

Examiner's Comments 

This was not quite so easy as part (i). Most 

candidates who got full marks spotted the 

cyclic pattern in the units digits of 3n as n 

increases. However, a significant minority 

evaluated 3n for n = 0 to 9 and then cited 

‘proof by exhaustion’. The second 

approach, less commonly used, was to use 

the fact that numbers ending in ‘5’ must be 

multiples of 5, and 3n contains no factors of 

5. However, many candidates who used

this approach were unable to express the

argument clearly enough and made

incorrect statements.

Total 4 

5 i n3 − n = n(n2 − 1) B1 two correct factors 

i = n(n − 1)(n + 1) B1 

Examiner's Comments 

Many candidates failed to factorise the n2 – 

1, leaving their answer as n(n2 – 1). This 

rendered the second part of the question 

very difficult. 

ii n − 1, n and n + 1 are consecutive integers B1 

ii 
so at least one is even, and one is div by 3 

[⇒ n3 − n is div by 6] 
B1 

Examiner's Comments 

There were two ideas needed here, the 

realisation that n – 1, n and n + 1 were 

consecutive integers, and that the product 

contained factors 2 and 3. Many candidates 

argued that the product had to be even, but 

this was not enough to gain credit. Others, 

predictably, verified the result with a few 
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values of n, often describing this as ‘proof 

by exhaustion’. 

Total 4 

6 x2n − 1 = (xn − 1)(xn + 1) B1 

one of 2n − 1, 2n + 1 is divisible by three 

2n − 1, 2n and 2n + 1 are consecutive 

integers; 

M1 

award notwithstanding false 

reasoning condone ‘factor’ for 

‘multiple’ 

one must therefore be divisible by 3; A1 

but 2n is not, so one of the other two is A1 if justified, correct reason must be given 

2n is not div by 3, and so has remainder 1 or 

2 when divided by 3; if remainder is 1, 2n − 1 

is div by 3; if remainder is 2, then 2n + 1 is div 

by 3 [so 22n − 1 is divisible by 3] 

A2 

Examiner's Comments 

The first B1 for factorising x2n − 1 

was well done, but convincing 

proofs of the divisibility of 22n − 1 

by 3 were few and far between. 

We awarded M1 if candidates 

recognised that either 2n − 1 or 2n 

+ 1 were divisible by 3, and two ‘A’

marks for proving this. The next ‘A’

mark was gained for stating that

the consecutive numbers 2n−1, 2n 

and 2n + 1 must include a multiple of

3, and the final mark for stating

that 2n is not divisible by 3;

however, many candidates wrongly

stated that 2n was even and

therefore not divisible by 3, or that

two consecutive odd numbers

must include a multiple of 3. The

most elegant alternative solution

seen was:

x2n − 1 = (x2 − 1)(x2n − 2 + x2n − 4 + 

…+ 1) ⇒ 22n − 1 = (22 − 1)(22n − 2 + 

22n − 4+ … + 1) = 3m, where m is an 

integer. 

The language used by candidates 

in their explanations was often 

rather imprecise. In particular, the 

terms ‘factor’ and ‘multiple’ were 

often used incorrectly. 

Total 4 
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7 

E.g. p = −1, q = 2

, 

So for these values. 

B1(AO3.1a)  

E1(AO2.1)  

[2] 

correct 
counter 
example 
stated 
shown 

Total 2 

8 

Use of n + 1 and n − 1 

(n + 1)(n − 1) = n2 − 1 

Therefore (the conjecture is) true for all 

positive integers n (greater than 1) 

B1(AO 2.1) 

M1(AO 

1.1a) 

E1(AO 2.1) 

[3] 

For both 
expressions 
seen 

Must be 
multiplied 
with 
attempt to 
expand 
brackets 

Clear 
conclusion 
must be 
stated 

Total 3 

9 

2k evaluated for any positive integer k 

eg 24 − 1 = 15 = 5 × 3 which is not prime 

M1(AO 1.1) 

A1(AO 2.4) 

[2] 

Any 
positive 
integer 
which 
generates 
any non-
prime 

Total 2 

10 

Suppose the polygon has n sides. 

Then 180(n − 2) = 155n 

⇒ 25n = 360 [⇒ n = 14.4]

M1 

A1 
or sum of 
ext 
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which is impossible as n is an integer 

So no regular polygon has interior angle 155° 
or 

When n = 14, int angle = 180×12/14  

= 154.29° 

When n = 15, int angle = 180×13/15 = 156° 

So no n which gives an interior angle 155°. 

A1cao 

B1 

B1 

B1 

[3] 

angles = 
360° so 
25n = 360 
or 72/5 

clear 
statement 
of 
conclusion 
accept 
154°  

Examiner’s Comments 

Candidates scored full marks or zero marks 

in roughly equal numbers here. Most gave 

the first method shown in the mark scheme, 

namely solving 180(n − 2)  

= 155n to get n = 14.4, but we also saw 

some examples of the second approach, 

finding the interior angles for 14 and 15 

sides. By far the most common error was to 

solve 180(n − 2) = 155, getting n = 2.86. 

Total 3 
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